Ток разряда аккумулятора- Обзор

Сегодня мы прольём свет на некое тайное знание о современных свинцовых аккумуляторах, которое есть в официальных инструкциях от производителей, но большинство читателей его не замечает, во многом по причине популярных аккумуляторных предрассудков и мифов.

На момент данного этапа эксперимента в лаборатории появился снискавший заслуженное признание тестер аккумуляторных батарей , гораздо более современный и продвинутый по сравнению с двумя использованными в КТЦ Topla ранее.

Тем не менее, и он считает разряженную Topla AGM Stop&Go AG60 негодной, предписывая отправить в утиль, а не заряжать. А мы всё же зарядим! Прибор — хорошо, умный, с красивым цветным экраном и USB подключением к ПК — ещё лучше, но голову на плечах он не заменяет.

В качестве отправной точки можно изучить инструкцию по эксплуатации и безопасности к 12V VRLA AGM АКБ, предоставляемую компанией Exide.

Для восстановительного заряда воспользуемся прибором Кулон-912, представляющим собой программируемое зарядно-разрядное устройство на основе стабилизированного источника тока и напряжения (CC/CV) с цифровым управлением и возможностью удалённого управления по wi-fi.

Иметь столь продвинутый прибор автомобилисту удобно, но необязательно. Можно обойтись любым зарядным устройством (ЗУ) с ручным режимом, регулируемым блоком питания (БП) или DC/DC преобразователем со стабилизацией (ограничением) напряжения и тока и их индикацией. Либо адаптивным ЗУ, автоматически устанавливающим токи и напряжения согласно его алгоритму.

Чтобы прибор обеспечивал такие параметры заряда, (ток, напряжение, время этапа), о которых пойдёт речь ниже, и прибором или человеком осуществлялся контроль их соблюдения. Если напряжение недостаточно, или не контролируется, и тому подобное, вероятность положительных результатов резко стремится к нулю.

Для — этапа основного заряда — автомобильного AGM аккумулятора максимальное напряжение устанавливаем 14.4 вольта, если температура АКБ выше 25 градусов Цельсия. Если ниже — 14.7 вольт, тогда напряжение начала снижения тока, (если оно предусмотрено Вашим ЗУ), ставим 14.4.

Ток основного заряда 10% номинальной ёмкости, — 1%. Для 60 А*ч это соответственно 6 и 0.6 ампер. Максимальное время этапа можно оставить без ограничения.

Устанавливаем такое же напряжение 14.7 вольт, ток 3% ёмкости, время 48 часов.

Параметры этапа буферного хранения: напряжение 13.6 вольт, максимальный ток 0.4 ампера.

При восстановлении очень глубоко разряженной или сильно изношенной АКБ рекомендуется ограничить ток основного заряда 2-5 процентами номинальной ёмкости.Для 60 А*ч это от 1.2 до 3 ампер. Рекомендация особенно актуальная при напряжении на клеммах ниже 12 вольт, для чего можно активировать Но наша АКБ новая, потому основной заряд будем производить током 10% = 6А.

Для от пользователя также требуется указать отправные точки определения параметров. Обычно это диапазон ёмкости АКБ, отвечающий за силу тока, и диапазоны напряжений, определяемых типом АКБ и температурой, задаваемые номером программы или ограничением напряжения, которые также влияют на число и последовательность этапов.

Если установлено слишком высокое значение напряжения, адаптивное ЗУ может продолжать заряд, пока он не будет завершён пользователем.

Это предусматривается для полного выравнивающего заряда аккумуляторов, нуждающихся в значительной десульфатации и (или) проявляющих склонность к стойкому расслоению электролита. Разумеется, при таких настройках пользователь должен периодически следить за ходом процесса и температурой аккумуляторной батареи.

Запускаем заряд. Несмотря на то, что этап предзаряда не активирован, Кулон-912 не сразу включает заданные 6 ампер, а постепенно повышает силу тока с нуля.

Прошло 12 часов, аккумулятору сообщено 58.19 А*ч. Ток уже 0.7 А. Скоро он снизится до 0.6, и ЗУ перейдёт к дозаряду. Если следовать инструкции от Exide, можно было установить ток завершения заряда не 1, а 2 процента, это для нашей АКБ 1.2 А. Тогда переход от основного заряда к дозаряду уже произошёл бы.

В зависимости от температуры и состояния аккумулятора, и AGM, и другие типы АКБ могут «застревать» при напряжении завершения основного заряда на некотором значении тока.

Дело в том, что 12-вольтовая батарея состоит из шести банок, в которых находится 12 полублоков по нескольку пластин, активные массы каждой из которых имеют длину, ширину, толщину и объём. Имеется и расслоение электролита, которое в AGM выражено слабо, а в «мокрых» аккумуляторах сильно.

Неизбежно возникающий и прогрессирующий разбаланс между банками, полублоками, участками АМ ведёт к тому, что в разных местах батареи при заряде идут разные процессы. При одних и тех же токе и напряжении на клеммах, токи между участками АМ и потенциалы полублоков распределяются по-разному.

если ЗУ позволяет автоматически, или у пользователя есть возможность и желание следить за параметрами, можно установить продвинутое условие перехода от основного заряда в дозаряд: ток при максимальном напряжении основного заряда снизился до 1% номинальной ёмкости, либо он ниже 2% и не снижается в течение 2 или более часов.

Чем более полно осуществлён каждый этап заряда, тем более полное восстановление аккумуляторной батареи у нас получится.

Данные рекомендации приведены для заряда постоянным током и напряжением. В случае ЗУ, использующих прерывистый или асимметричный (реверсивный) ток, значения напряжений и токов перехода между этапами, а также вольтамперные характеристики батареи после этапов, будут другими.

Дело в том, что потенциалы реальной свинцово-кислотной электрохимической ячейки при отсутствии или том или ином направлении, (разряд / заряд), тока во внешней цепи складываются не только из термодинамической ЭДС и падении напряжения на внутреннем сопротивлении, но и совокупности нескольких ЭДС поляризации, куда вносят свой вклад, в частности, наличие газов в порах активных масс и расположение носителей заряда, — ионов, — в объёме электролита.

Процессы выработки и расхода газов, движения ионов, имеют свою кинетику.

Потому электрохимики говорят применительно к электрохимической ячейке о вольтамперной характеристике во времени, или отклике на зарядный и разрядный импульс. И потому для заряда современных свинцовых АКБ со специальными добавками в активные массы и продвинутой конструкцией сепараторов, влияющих на движение ионов и газов, используются многоступенчатые профили заряда и иногда особые формы тока. (Можно вспомнить, что генераторы транспортных средств и трансформаторные ЗУ заряжают АКБ не постоянным, а пульсирующим током).

Температура аккумулятора 26.4 градуса Цельсия, в помещении 23 градуса. Нагрев при заряде совсем небольшой.

Тем временем, практически сразу после предыдущего фото ток снизился до 600 мА, ЗУ перешло в дозаряд. После суток дозаряда ток 130 мА.

Подходят к завершению вторые сутки дозаряда. Ток колеблется от 40 до 100 мА.

Тайное знание у всех на виду, но его не замечают

На этом большинство посчитает, что все этапы профиля заряда завершены, всё, что можно и нужно было сделать для восстановления АКБ, сделано.

Но так ли это?! Процитируем официальную инструкцию от Эксайд.

Завершающий этап зарядки проводится путем использования постоянного тока (2% номинальной емкости) в течение 2 часов. На всех этапах зарядки температура батареи не должна превышать 50°C.

Где здесь указано максимальное напряжение на клеммах аккумулятора?

Нигде, потому что это постоянным током 2% номинальной емкости без ограничения напряжения. Предписывается только соблюдать фиксированное время этапа — 2 часа, и контролировать температуру АКБ, чтобы она не превысила 50 градусов Цельсия.

Эксайд не одинок в таких «высоковольтных» рекомендациях.

Для примера, Chaowei для Chilwee EVF и Tianneng для TNE рекомендуют этап заряда напряжением до 16.02В, током 1% ёмкости, не более 2 часов, после завершения основного заряда и двух этапов дозаряда, и при условии, что основной заряд продолжался более 3 часов, т.е. аккумулятор был разряжен в достаточно значительной степени.

Этот режим более мягкий и осторожный, но и предназначается он не для стартерных AGM, а для тяговых гелевых АКБ с углеродными добавками в активные массы.

И он необходим для предотвращения деградации аккумуляторов сульфатацией от хронического прогрессирующего недозаряда.

Максимальное напряжение, которое может выдать Кулон-912, равно 16.5 вольт. Его и установим. Время 2 часа, без пауз и реверса. Запускаем.

Напряжение быстро достигло максимума, ток снижается. Если строго следовать инструкции Exide, нужно напряжение ещё выше, чтобы стабилизировать ток 2% на протяжении всех двух часов, но Кулон-912 такой технической возможности не предоставляет.

Прошло 36 минут, ток при 16.49 В колеблется от 200 до 410 мА.

После двух часов завершающего этапа «высоковольтного» дозаряда температура АКБ 27.8 градуса. Аккумулятор не «закипел» и не раздулся.

Ведь мы не превышали ток и время этапа.
При длительном нахождении даже под буферным напряжением в источниках бесперебойного питания изношенные AGM аккумуляторы перегреваются и вздуваются.

Чтобы это предотвратить, можно долить дистиллированную воду и произвести полный десульфатирующий дозаряд. Таким способом во многих случаях удаётся восстановить AGM аккумулятор ИБП, если несуще-токоведущие конструкции из свинцового сплава не разрушены длительным перезарядом.

Однако после вскрытия крышек над клапанами и долива появляется риск утечки электролита при расположении АКБ не вверх пробками.

Спросите, какой может быть у сульфатированного, то есть, аккумулятора? — Такой, что при недостатке воды и напряжения для преобразования рабочих сульфатов в заряженные активные массы, электроэнергия идёт на дальнейшую потерю воды и наработку активных масс из решёток и тоководов.

Положительные окисляются и рассыпаются, а отрицательные из сплошных становятся губчатыми. Иногда при вскрытии вышедшей из строя AGM АКБ обнаруживаются наросты губчатого свинца, приведшие к короткому замыканию.

В случае работы АКБ под буферным напряжением 13.8 В, инструкция Эксайд предписывает рассмотеть возможность применения такого трёхступенчатого профиля заряда, (основной заряд, первый дозаряд, второй дозаряд), раз в месяц. Как минимум, это необходимо делать два раза в год. При зимней эксплуатации, подзаряд (без третьего этапа) желательно производить раз в неделю.

Диалектика свинцово-кислотных батарей такова, что недозаряд ведёт к сульфатации, а перезаряд к потере воды и коррозии. Противоречие разрешается следующим образом: рабочие заряды и в циклическом, и в буферном режимах осуществляются при пониженных напряжениях, минимизирующих коррозию и потерю воды, но неизбежный при такой эксплуатации недозаряд компенсируется периодическим полным стационарным выравнивающим дозарядом. Также последний необходим после каждого разряда аккумуляторной батареи.

Непонимание этой диалектики, разницы между повседневным и «лечебно-профилактическим» зарядами, и необходимости соблюдения напряжений, токов, времени, условий начала и завершения этапов зарядного профиля ведут к возникновению и поддержанию мифов и предрассудков на тему аккумуляторов и зарядных устройств.

Также следует понимать, что рекомендации и предписания в различной литературе даются применительно к тому оборудованию, наличие которого предполагается в распоряжении адресата. Например, стабилизаторы постоянного тока, (за исключением барретеров, в качестве которых применяются лампочки и иные мощные проволочные резисторы), вошли в доступный арсенал для обслуживания АКБ не сразу, и до сих пор имеются не везде.

Потому до сих пор действует немало документации, составленной под старое оборудование, где приходится ограничивать напряжение в силу невозможности тонко и оперативно регулировать ток.

После суточного отстоя, сравним показания двух аккумуляторных тестеров, старого DHC BT280 и нового Konnwei KW600.

Новый тестер выдал показания как старый в режиме обычных, не AGM АКБ.

По этому вопросу Виктор написал представителю Konnwei, в ответ получена рекомендация обновить прошивку тестера с помощью официального приложения, так как алгоритмы для разных типов АКБ у них тогда были на стадии доработки. (Обновлений с тех пор было несколько, и в 2021 году с тестерами Konnwei всё отлично).

А пока, (на август 2019 года), достоверными считаем показания DHC BT280, которые проявили повторяемость на протяжении испытаний двух АКБ Topla.

Итак, пусковые характеристики этого AGM аккумулятора мы восстановили.

Что насчёт ёмкости? Произведём восьмой по счёту контрольный разряд по ГОСТ.

Ёмкость 20-часового разряда поднялась на , и теперь на превышает номинальную! Прекрасный результат!

Заметим, что только дозаряд с повышенным перенапряжением позволил полностью восстановить ёмкость после недозаряда ЗУ BL1215 в КТЦ4, когда аккумулятор потерял 5.34% ёмкости.

Аккумулятор, особенности выбора

Итак, прежде чем идти и покупать аккамулятор, необходимо определиться с параметрами, которым он должен соответствовать, чтобы нормально функционировать в сочетании с другим электрооборудованием автомобиля.

Основными параметрами считаются следующие:

  • электрическая (номинальная) емкость, А•ч
  • значение пускового тока (тока стартерного разряда при регламентированном напряжении на полюсных выводах в режиме пуска двигателя автомобиля), А
  • размеры корпуса АКБ
  • масса АКБ.

Электрическая емкость характеризует количество электричества, которое способна отдать АКБ при длительном режиме разряда или способность аккумулятора давать определенный ток в течение определенного времени.

Так, емкость 60 ампер-час означает, что аккумулятор может давать ток в 1 ампер в течение 60 часов (или в 2 ампера в течение 30 часов и т.д.).

Электрическая емкость батареи определяется либо при 20-часовом разряде, либо в режиме резервной емкости.Грубо говоря, емкость – это сколько электричества «умещается» в аккумуляторе. Причем размеры (длина-ширина-высота) здесь не так важны, как особенности конструкции и, следовательно, внутренние возможности накапливать энергию.

Вообще-то, то, что пишут на этикетках европейских и отечественных АКБ – есть номинальная электрическая емкость, то есть емкость 20-часового разряда батареи. Именно она регламентируется в большинстве нормативных документов производителей (в Росии – это соответствие ГОСТу 959-91).

Для определения номинальной емкости батарею непрерывно разряжают при температуре 25°C током, равным 0,05 C20 (имеется в виду, 0,05 А от величины номинальной емкости, указанной производителем при 20-часовом режиме разряда). Получается, что для АКБ емкостью 60 А•ч ток разряда составляет 3 А, а для АКБ, емкостью 90 А•ч – 4,5 А.

При определении номинальной емкости разряд прекращается, если 12-вольтовая батарея через положенные 20 часов стала длительно выдавать ток с напряжением 10,5 В.

На аккумуляторах американского производства зачастую можно прочитать такую характеристику, как резервная емкость. Между прочим, в Америке это более почитаемый параметр, чем номинальная емкость. Он показывает интервал времени (в минутах), в течение которого аккумулятор способен давать ток 25 А (т.е. в течение какого времени он сможет подменять собой вышедший из строя генератор).

Или же – это запас емкости аккумулятора, измеренный в минутах при разряде током в 25 А для батарей любой емкости при температуре 27°C. К примеру, для АКБ номинальной емкостью 55 А•ч резервная емкость может составлять 85-90 минут. Это значит, что при выходе из строя генератора, автомобиль сможет двигаться еще примерно 1,5 часа за счет энергии АКБ.

Причем, резервная емкость — время (в минутах), в течение которого аккумулятор при токе разрядки в 25 А способен поддерживать напряжение не ниже 10,5 вольт.По американским понятиям резервная мощность – наиболее важное значение, так как показывает время, за которое можно проехать ночью при минимальной электрической нагрузке автомобиля при неработающем аккумуляторе.

Почему стоит ограничение в 10,5В, думаю, понятно: такое напряжение еще позволяет уверенно пускать двигатель стартером.

Что касается установленного времени, то когда-то был стандарт – 2 часа (считалось, что это необходимое время, чтобы среднестатистический американец смог добраться до ближайшего сервиса). Со временем число сервисов увеличилось настолько, что смысл в 2-часовом ограничении отпал, но остался непреложный принцип: чем больше, тем лучше.

Пусковая мощность — величина максимальной выходной мощности, которую аккумулятор может выдавать в течение 30 секунд при температуре минус 18 градусов С. Этот показатель характеризует способность аккумулятора запускать холодный двигатель.

Но дело в том, что производитель может подгонять данный параметр под разные стандарты.Так, российские ТУ и германский DIN – имеют более жесткую спецификацию. Она называется: стартерный режим разряда (короткий разряд).Согласно ее при температуре электролита –18°С (холодный пуск), и при токе разряда 255 А напряжение на клеммах через 30 секунд после начала испытаний не должно быть менее 9В.

Причем, при дальнейшем разряде батареи напряжение имеет право снизиться до 6 В не ранее чем через 150 секунд. Именно такая проверка энергетики гарантирует, что выдержавший ее аккумулятор обеспечит нам не менее трех-пяти полноценных попыток пуска двигателя.

Кстати, пуск – это 10 секунд работы плюс 30 секунд передышки.

Почему за отправную точку взята температура минус 18°С?

Да просто в соответствии с товарными маслами за зимнюю температуру пуска бензинового двигателя принимается −20° С, а для дизельных двигателей — до −15-17°C. А посему выходит, что «средняя температура по больнице» равна примерно –18°С. При более низких температурах для дизелей уже предполагается применение средств облегчения пуска (аэрозоль, подогрев топлива, масла, воздуха и т.д.). Подобные же средства облегчения в зимних условиях могут применяться и для пуска бензиновых двигателей.

Другой, более мягкий стандарт – по SAE (США) или EN (Стандарт Евросоюза). Он называется: ток холодной прокрутки.Специалисты, разрабатывающие этот стандарт, считают, что максимальная нагрузка на аккумулятор приходится именно в первые секунды пуска двигателя, а потом ему становится гораздо легче.

Поэтому согласно данной спецификации на холодный запуск требуется нагрузка выше, чем по ТУ и DIN – около 440А. Но уже через 10 секунд такой нагрузки напряжение на клеммах не должно «просесть» ниже 7,5В, а через 30 секунд – ниже 7,2В (в предыдущих было – 9В).Требование то же – аккумулятор в мороз должен выдержать не менее 3-х пусков (по 10 секунд работы с 30-секундными паузами).

В общем, мощность аккумулятора, характеризуемая временем стартерного разряда, показывает, как долго она сможет обеспечивать попытки запуска двигателя. Поэтому понятно, что чем больше емкость АКБ, тем больше в запасе у автовладельца попыток запустить двигатель. Но здесь есть и свои подводные камни.

Ампе́р-час (А·ч) — внесистемная единица измерения электрического заряда, используемая главным образом для характеристики ёмкости электрических аккумуляторов.

Исходя из физического смысла, 1 ампер-час — это электрический заряд в 3600 Кл, проходящий через поперечное сечение проводника за один час и обеспечивающий в течение одного часа ток в один ампер.

Заряженный аккумулятор с заявленной ёмкостью в теоретически способен обеспечить силу тока в на протяжении одного часа (или, например, 3600 А в течение 1 секунды, или на протяжении , или на протяжении ) до полного разряда. На практике слишком большой ток разряда аккумулятора приводит к менее эффективной отдаче электроэнергии, что нелинейно уменьшает время его работы с таким током и может приводить к перегреву.

Часто также применяется производная единица миллиампер-час (мА·ч, mAh), которая используется обычно для обозначения ёмкости небольших аккумуляторов.

Величину в ампер-часах можно перевести в системную единицу измерения заряда — кулон.

Перевод в ватт-часы

Часто производители аккумуляторов указывают в технических характеристиках только запасаемый заряд в мА·ч (mAh), другие — только запасаемую энергию в Вт·ч (Wh).

Обе характеристики можно называть термином «ёмкость» (не путать с электрической ёмкостью как мерой способности проводника накапливать заряд, измеряемой в фарадах), однако они имеют разную размерность, и их нельзя приравнивать друг другу: ампер-часы имеют размерность электрического заряда, ватт-часы — размерность энергии. Вычислить запасаемую энергию по запасаемому заряду в общем случае непросто: требуется интегрирование мгновенной мощности, выдаваемой аккумулятором за всё время его разряда. Если большая точность не нужна, то вместо интегрирования можно воспользоваться средними значениями напряжения и потребляемого тока, для этого используя формулу, следующую из того, что 1 Вт = 1 В · 1 A:

1 Вт·ч = 1 В · 1 A·ч.

То есть запасаемая энергия (в ватт-часах) приблизительно равна произведению запасаемого заряда (в ампер-часах) на среднее напряжение (в вольтах):

E = q · U,

а в джоулях она будет в 3600 раз больше,

E = q · U · 3600

В технической спецификации устройства указано, что «ёмкость» (запасаемый заряд) аккумулятора равна 56 А·ч, рабочее напряжение равно 15 В. Тогда «ёмкость» (запасаемая энергия) равна 56 A·ч · 15 V = 840 Вт·ч = 840 Вт · 3600 с = 3,024 МДж.

При последовательном соединении одинаковых аккумуляторов «ёмкость» в мA·ч остаётся прежней, но меняется общее напряжение аккумуляторной батареи; при параллельном же соединении «ёмкость» в мА·ч — складывается, но общее напряжение не меняется. При этом «ёмкость» в Вт·ч. у таких аккумуляторных батарей следует считать одинаковой.

Например, для двух аккумуляторов, каждый из которых обладает напряжением 3,3 В и запасаемым зарядом 1000 мA·ч, последовательное соединение создаст источник питания с напряжением и запасаемым зарядом , параллельное соединение — источник с напряжением и запасаемым зарядом . Ёмкость же в Вт·ч (способность проделать работу) в обоих случаях, без учёта некоторых нюансов, будет одинаковой.

В современных Power Bank-ах, получивших распространение в последнее время, часто аккумуляторы внутри соединены последовательно, а общую «ёмкость» в мA·ч складывают.

Это происходит из-за того, что такие Power Bank-и имеют внутренний контроллер, который преобразует напряжение и на выходе предлагает несколько значений напряжений: 5 вольт (USB порт), 12, 15, 17 или 19 вольт для подключения ноутбуков. То есть, нет возможности указать, при каком напряжении уместна та или иная «ёмкость» в mA·ч, так как она меняется в зависимости от напряжения, используемого потребителем, подключенного к такому универсальному Power Bank.

Поэтому в характеристиках пишут «коммерческую» ёмкость в мA·ч, полученную как сумму последовательно соединённых аккумуляторных элементов, не указывая при этом напряжение, при котором эта «ёмкость» в мA·ч уместна.

Также следует учитывать, что ёмкость аккумулятора и его напряжение — взаимосвязанные величины, так как аккумулятор, который разряжен, теряет напряжение.

Причём измерение напряжения разряженного аккумулятора или батареи без нагрузки может не выявить степень разряженности источника питания, так как на «холостом ходу», без нагрузки, аккумуляторная батарея способна показать высокое напряжение, которое резко упадёт, в случае если аккумулятор или батарея разряжены и если к ним подключили определённую нагрузку, в отличие от заряженных источников питания, которые сохраняют высокое значение напряжения даже после подключения нагрузки.

У разряженных аккумуляторов падение напряжения при подключении нагрузки происходит сильнее, чем у заряженных источников питания. Для проверки автомобильных аккумуляторов часто используют специальные «пробники», создающую стандартную нагрузку на аккумулятор.

Какова норма тока утечки аккумулятора автомобиля и как его измерить?

Многие владельцы автомобилей сталкивались с ситуацией, когда с утра не могли завести машину. Причём с вечера все было нормально. Да и сам аккумулятор новый и в исправном состоянии.

  • Причиной здесь может быть ток утечки аккумулятора.

Это явление существует на любом автомобиле, но должно укладываться в определённую норму. Если норма тока утечки превышена, то аккумулятор во время стоянки будет разряжаться. В результате вы будете иметь проблемы с запуском двигателя. Пора разобраться из-за чего происходит ток утечки аккумулятора и как привести его к норме.

Причины возникновения тока утечки аккумуляторной батареи

Назначение аккумуляторной батареи заключается в том, чтобы обеспечивать пуск двигателя, и помощь генератору в обеспечении питанием потребителей бортовой сети, если последний не справляется с нагрузкой.

Во время поездки АКБ подзаряжается от генератора и возмещает разряд. По идее на стоянке автомобильный аккумулятор не должен терять заряд, но существует ток утечки. Причём в современных авто, где есть множество электроники, ток утечки увеличивается и зачастую превышает норму.

Важно понимать, что ток утечки автомобильного аккумулятора может приводить не только к разрядке аккумулятора, но и к возгоранию проводки.

Разряженный аккумулятор – это само по себе неприятно, но если не привести ток утечки в норму, то последствия этого явления будут гораздо хуже.

Диагностика и норма тока утечки АКБ

Нормой тока утечки считаются значения от 15 до 70 мА. Для современного автомобиля вполне нормальные показатели.

Если в вашем случае ток утечки автомобильного аккумулятора значительно выше, то нужно искать причину этого. Как это сделать?

  • Подключаете мультиметр, как было сказано выше, и по очереди начинаете вынимать предохранители и реле. Это делается для поочерёдного размыкания цепей в бортовой сети.
  • Когда показания тока утечки придут в норму, значит, вы нашли цепь с проблемным потребителем.
  • Дальше уже нужно более подробно заниматься этим устройством (ремонт, замена).

Дополнительная проверка

Может возникнуть ситуация, когда вы проверили ток утечки с извлечением предохранителей, но источник проблемы установить не удалось. Тогда нужно провести проверку мест, которые не защищены предохранителями.

Это, к примеру, стартер и генератор.

Ведь часто причиной разряда АКБ является некорректная работа генератора, который её просто не заряжает.

О чём следует помнить?

При проведении профилактических работ с аккумулятором советуем проверять ток утечки автомобильного аккумулятора. На современном автомобиле нормой является значение 15─75 мА при выключенных потребителях бортовой сети.

Евгений

Здравствуйте, меня зовут Евгений, более 7 лет я работаю в сервисе по замене аккумуляторов для различной техники, этот сайт я создал чтобы делиться полезной и практической информацией с вами! Буду благодарен, если вы опишите свой опыт или мнение в комментарии, надеюсь, что данная информация принесёт только пользу, сохраняйте сайт в закладки (Ctrl + D)

Оцените автора
Zariadit.ru
Добавить комментарий