Бета-гальванические батареи

От смартфона до ракеты. Учёные создали «вечную» атомную батарейку

Устройство поможет решить серьёзные проблемы с электроснабжением на отдалённых объектах.

Дух времени

Российские учёные из НИТУ «МИСиС» создали атомную батарейку, способную прослужить до 50 лет. Удельная мощность и КПД нового устройства в десять раз выше, чем у любых зарубежных аналогов. Источником энергии в устройстве служит изотоп никель-63 с периодом полураспада около 100 лет, но вопросы к конструкции атомной батарейки всё равно остаются

Изобретение атомной батарейки неслучайно сравнивают с созданием вечного двигателя. Применение такой технологии безгранично: небольшая батарейка может питать практически любой — как бытовой, так и военный прибор. От «вечных» спутников и небольших беспилотников до суперкомпьютеров и небольших полярных станций — одного элемента с радиоактивным изотопом будет достаточно, чтобы подогреть еду, дать свет и даже набрать горячую ванну.

Особенно прорывной эта технология может стать в космосе, с учётом того что человечество уже стоит на пороге освоения ближайших к Земле миров. Аспирант факультета прикладной физики Массачусетского технологического института Егор Касаткин отметил, что рынок для атомных батареек даже в существующих условиях безграничен.

Военная и гражданская авиация, добывающая промышленность, автономные системы энергоснабжения — можно миллион направлений подобрать, где такая технология будет пользоваться спросом. Весь вопрос в том, насколько гибкой в конечном счёте получится архитектура — можно ли надстроить источник питания для подключения, скажем, не компьютера, а полноценного жилого помещения? — Егор Касаткин. Аспирант факультета прикладной физики Массачусетского технологического института

Конкуренты тоже есть

Промышленный выпуск радиоактивных изотопов для российских атомных батареек хотят наладить до конца 2020 года. Если коронавирус и спровоцированные им изменения не преподнесут дополнительных сюрпризов, то «бензин» для маленьких реакторов со слабым бета-излучением начнут делать в достаточных для экспорта количествах. К созданию батареек, в которых радиоактивный изотоп и алмазный преобразователь для электрической энергии могут спокойно работать 50 и даже 100 лет, в разных странах подошли практически одновременно. Первые разработки российских учёных в этом направлении датируются 2018 годом, их британские коллеги создали такую же технологию в 2019-м, однако ни те ни другие батарейки в продаже ещё не появились.

Зато у американских учёных есть вполне жизнеспособный образец. Разумеется, атомная батарейка в современном её виде — это почти всегда прототип, который нужно дорабатывать. Но американская технология существенно отличается от российской. Два прототипа бета-гальванических батарей значительно мощнее российских, хоть и работают по схожему принципу — преобразовывают радиоактивное бета-излучение в электрический ток.

В компании NDB (разработчик батарейки) утверждают, что продукт позволит «вечно» снабжать энергией абсолютно любое устройство: от смартфона до небольшой баллистической ракеты, которая может автономно и скрытно храниться где-нибудь недалеко от противника. Прототипы атомной батарейки NDB уже прошли испытания в Ливерморской национальной лаборатории и «атомной» лаборатории Кембриджского университета

.

Американцам, кстати, принадлежит и пальма первенства по внедрению такой технологии на военные и гражданские спутники и космические аппараты. Первые образцы атомных батареек устанавливали на спутники Transit 4A и 4B.

В обоих случаях учёные подтвердили, что эффективность энерговыделения у прототипов NDB оказалась на уровне 40 процентов. Для сравнения: КПД конкурирующих батарей колеблется в районе 15 процентов. С американской атомной батарейкой всё почти идеально — она не превышает в размерах обычный микрочип, не требует обслуживания и позволяет обеспечить значительным количеством электроэнергии целую серверную крупного предприятия. Единственный недостаток американского устройства — быстрый выход из строя.

Научный сотрудник факультета физики Сямэньского университета в Китае Константин Ян отметил, что этот ресурс может вырабатываться за несколько лет.

Заявляемый ресурс — почти 30 тыс. лет. Это очень много, но с учётом отсутствия буферных зон — конденсаторов или литийионных аккумуляторов, большая часть электроэнергии будет просто уходить в никуда. Суть в том, что пока не будет придумано хранилище для излишков энергии, смысла в таких батарейках нет. Российская разработка в этом смысле почти идеальна — небольшой размер, отсутствие потерь энергии и высокий КПД. Её стоимость может оказаться в десятки раз ниже, чем зарубежных аналогов. — Константин Ян. Научный сотрудник факультета физики Сямэньского университета в Китае

Кто первый взял, того и тапки

С точки зрения перспектив эксперты ожидают первого технологического «взрыва» на рынке мобильной электроники. Ноутбуки, смартфоны, смарт-часы, фитнес-трекеры и вообще любое устройство «интернета вещей» может быть оснащено как упрощённой версией атомной батарейки, так и «топовой» конфигурацией с повышенной выработкой электроэнергии. Средняя цена «простой» версии на будущее — примерно 100 долларов. Цена за атомную батарейку верхнего уровня — около одной тысячи долларов США.

Бета-гальванические генераторы, по сути дела — обычные
батарейки, которые используют энергию радиоактивного источника,
излучающего бета-частицы. Обычно используются изотопы водорода
(тритий). В отличие от атомных источников питания, которые
используют радиоактивное излучения для генерации электричества
(термоэлектрические и термоионные источники),
бета-гальванические источники используют нетермическое
преобразование для генерации электричества.

По принципу действия бета-гальванические (betavoltaic) элементы сходны с солнечными батареями, которые преобразуют фотоны (свет) в электричество. В бета-гальваническом генераторе электрон ударяется о специальную поверхность между двумя слоями материала
(p — n-переход), в результате чего образуется электричество.

Для повышения КПД используются пористые кремниевые диоды – увеличивают поверхность соприкосновения. И хотя бета-гальванические генераторы используют радиоактивные материалы в качестве источника питания, важно отметить, что бета-излучение имеет низкую энергию и легко останавливаются экранированием. При правильно спроектированным экранировании бата-гальванические элементы не будут излучать никакой радиации. Со временем из-за полураспада радиоактивного вещества мощность генератора будет уменьшаться – это компенсируется заменой элементов.

Принцип работы etavoltaic-аккумуляторов основан на взаимодействии полупроводниковых материалов и радиоизотопов, использующихся в качестве источника энергии.
Бета-излучение, возникающее при расщеплении радиоизотопов, превращается в электроэнергию. Пускай такая такая технология и имеет некоторое отношение к ядерной энергии, она может считаться безопасной в бытовой эксплуатации. Безопасность подобных устройств особенно важна, учитывая ряд возгораний и даже взрывов батарей для ноутбуков и сотовых телефонов, произошедших в последнее время.

Бета-гальваническая (betavoltaic) батарея генерирует электрическую энергию следующим образом: радиоизотоп, который используется в качестве «топлива», излучает бета-излучение, которое бомбардирует кремниевую пластину, состоящую из двух слоёв. Выбиваемые со своих орбит электроны и создают разность потенциалов (и, соответственно, электрический ток).

Скорее всего батареи будут небольших размеров и тонкими – по крайней мере, так обещают разработчики технологии. Изотоп водорода (тритий), образующийся в процессе работы, будет
накапливаться в пористых кремниевых пластинах. Надо добавить, что при работе батареи практически не выделяется тепловая энергия — а это довольно серьезное преимущество по сравнению с литий-ионными и т.п. аккумуляторами.

Ну, а секрет долголетия таких батарей заключается в высокой энергоплотности процесса бета-распада, длящимся порядка 30-ти лет.

Важной особенностью является и экологичность отработанных элементов: после того, как срок эксплуатации аккумулятора закончится, он становится совершенно безвредным для окружающей среды.

Точные сроки выхода рабочего образца бета-гальванической батареи не называются, однако разработчики технологии уверяют, что до появления на прилавках магазинов бета-гальванических батарей остаётся буквально несколько лет.

Ученые и компании ищут новые решения для хранения энергии. РБК Тренды разобрались, чем уже скоро станут привычные нам аккумуляторы.

Согласно отчету Verified Market Research, мировой рынок аккумуляторов по итогам 2019 года оценивался в $36,35 млрд. К 2027 году он может вырасти до $116 млрд. При этом объем российского сегмента рынка систем накопления энергии к 2025 году может составить $1,5-3 млрд в год. Минэнерго в своей концепции 2017 года заявляло о $8 млрд к 2025 году.

Наиболее популярными хранилищами энергии остаются литий-ионные аккумуляторы. Однако компании и исследователи находятся в поиске новых решений, которые станут более энергоемкими, дешевыми и экологичными.

Электротранспорт и бытовая техника

В 2019 году Tesla объявила о разработке батарей, способных выдержать 1 млн миль (свыше 1,6 млн км) пути без необходимости замены. Текущие аккумуляторы нужно менять после 300 — 500 тыс. миль проделанного пути.

Речь идет о литий-ионных батареях с катодом следующего поколения и новым электролитом. Даже при температуре в 40 °C они выдерживают 4 000 циклов заряда-разряда, а с активной системой охлаждения аккумуляторы смогут выдерживать до 6 000 циклов. Пока вышли первые протестированные образцы.

Графит

В 2020 году Mercedes-Benz объявил о планах по созданию органического аккумулятора. Основой технологии станет графит с электролитом на водяном растворе. Это позволит исключить использование тяжелых и токсичных металлов, а утилизировать батареи можно будет путем компостирования. Однако в Mercedes отмечают, что начало массового производства таких аккумуляторов начнется не раньше, чем через 15 лет.

Углеродные волокна

В 2021 году группа ученых из технологического университета Чалмерса в Швеции представила аккумулятор для автомобиля из углеродного волокна. Ученым удалось добиться номинального напряжения 2,8 В, а батареи имели удельную емкость 8,55 А·ч/кг, плотность энергии 23,6 Вт·ч/кг (при 0,05 °C), удельную мощность 9,56 Вт/кг (при 3 °C) и толщину 0,27 мм. Это примерно 4 680 ячеек, которые Tesla помещает в электрокары, чтобы иметь плотность энергии 380 Вт·ч/кг.

В будущем такие аккумуляторы из композитных материалов можно будет использовать как в автомобилях, так и в самолетах, чтобы сделать их легче и экологичнее. Пока ведутся испытания прототипов разных форм-факторов.

Без кобальта

В конце 2019 года IBM представила образец аккумулятора без никеля и кобальта, из материалов, которые могут быть получены из морской воды. Он включает комбинацию катодного материала без тяжелых металлов и безопасного жидкого электролита с высокой температурой горения. Специалисты уже подсчитали, что эти материалы могут сделать аккумуляторы дешевле существующих литий-ионных и при этом будут иметь более высокие характеристики скорости зарядки и энергетической плотности, а также будут менее огнеопасными.

Авторы разработки считают, что у нее есть потенциал для внедрения в отрасль электромобилей. Для достижения заряда на уровне 80% батарее требуется менее пяти минут, она имеет энергоэффективность более 90%, а ее мощность превышает 10 000 Вт/л, что больше показателей самых мощных литий-ионных батарей. Кроме того, тесты показали, что батарея способна прослужить достаточно долго, чтобы ее можно было использовать в интеллектуальных электросетях и новой энергетической инфраструктуре.

Для будущего производства аккумуляторов IBM уже заключила коммерческое соглашение с Mercedes-Benz, поставщиком электролита Central Glass и производителем батарей Sidus.

Полимеры

В 2017 году стартап Ionic Materials презентовал полимерный аккумулятор, который в перспективе сможет заменить литий-ионные. Компания заявила, что полимерные литий-металлические аккумуляторы будут безопаснее, долговечнее и экономически выгоднее, так как процесс их производства похож на производство пластиковой упаковки.

Разработка имеет высокое относительно литий-ионных аккумуляторов напряжение (5 В). Прототип, как заявляет производитель, выдерживает до 400 циклов заряда-разряда. Компания работает над тем, чтобы увеличить этот показатель втрое.

Полимер для аккумуляторов получили из алюминия и других распространенных материалов.

На цинке

EnZinc, стартап по производству цинковых батарей, заявил в 2021 году, что нашел способ для замены лития на нетоксичный и дешевый цинк в аккумуляторах. До этого на рынке существовали только неперезаряжаемые цинковые батареи.

Уже появились первые цинковые батареи, которые можно быстро заряжать и разряжать, и которые имеют высокую емкость, 460 Вт·ч/кг (по сравнению со 120 Вт·ч/кг для больших литиевых аккумуляторов). Они выдерживают несколько тысяч циклов зарядки и разрядки. Ведутся испытания образцов.

Такие батареи могут стоить $100 за кВт·ч, что вдвое дешевле самых простых литий-ионных версий. Их можно будет масштабировать для мобильных телефонов и до транспортных систем, а также для нужд электроэнергетики.

«Вечная атомная батарейка»

В 2020 году американский стартап Nano Diamond Battery представил прототип бета-гальванической батареи, которая потенциально может проработать тысячи лет. Разработка имеет специальный корпус из синтетических алмазов, внутрь которого помещен радиоактивный центр, работающий на переработанных ядерных отходах углерода-14. Бета-излучение изотопов преобразуется в электрический ток.

Испытания батарейки показали, что радиационный фон остается в норме, а сама она не выделяет углекислый газ. При этом ее стержень «фонит» до 28 тыс. лет, и именно столько может работать батарейка.

Nano Diamond Battery уже предложила разные форм-факторы, в том числе широко распространенные АА, AAA, 18650, CR2032 и другие.

Пока разработку будут тестировать предприятия, которые производят, обслуживают и утилизируют продукты ядерного топлива, а также компании аэрокосмической, оборонной и охранной продукции.

Над похожей батарейкой работали и специалисты из НИТУ «МИСиС». Их конструкция работает на никелевом бета-гальваническом элементе, который служит около 20 лет.

Кроме того, в МИСиС разработали термохимические ячейки, которые превращают тепло в электрическую энергию. Эти элементы можно размещать на одежде и использовать их энергию для зарядки мобильных устройств.

Альтернативная энергетика

В мае 2012 года международная группа ученых разработала новые ультратонкие металлические электроды на золоте, которые позволят создавать прозрачные солнечные панели. Эти панели можно будет устанавливать в окнах домов и офисов. Они будут аккумулировать энергию солнечного света в течение дня.

А в 2020 году Tesla презентовала собственный инвертор солнечной энергии, который дополнит линейку домашних солнечных батарей компании. Он будет преобразовывать солнечную энергию в энергию постоянного тока, а затем — в энергию переменного тока для бытового потребления. Устройство сможет работать при температурах от минус 30 °C до 45 °C. В зависимости от числа трекеров точки максимальной мощности, оно сможет выдавать от 3,8 кВт до 7,6 кВт мощности.

Геотермальная энергия

Американский стартап UC Won в 2020 году предложил концепцию геотермального накопителя GeoTES (Geological Thermal Energy Storage) для круглосуточного использования солнечной энергии. Система объединит солнечные тепловые коллекторы с параболическими зеркалами (фокусируют лучи в одной точке), подземное хранилище тепла в осадочных породах (образуются при низких температурах и давлении) и электрогенерирующее оборудование на пару в виде трубок и турбины. При нагревании солнцем вода в трубках будет испаряться, а пар будет входить в турбину и одновременно закачиваться под землю, разогревая осадочную породу. Ночью вода под землей будет испаряться уже под воздействием разогретой породы. Получаемый пар используют для выработки электроэнергии.

Криосистемы

Стартап из Великобритании Highview Power начал работы в Манчестере по строительству комплекса CRYOBattery мощностью 50 МВт и емкостью 250 МВт·ч. Система CRYOBattery будет захватывать воздух из атмосферы в специальную емкость и сжимать его при сверхнизких температурах (минус 196 °C), чтобы превратить в жидкость. Эту жидкость поместят в баки с теплоизоляцией и низким давлением. Нагревание вернет воздух в газообразное состояние, а газ приведет в действие турбины генераторов, которые будут вырабатывать электричество.

В мае 2021 года международная группа ученых представила новые ультратонкие металлические электроды из золота, которые можно будет применять для разработки прозрачных солнечных панелей. Потенциально такие панели можно будет встраивать в окна домов и офисов, чтобы аккумулировать энергию.

Гравитация и другие необычные решения

Шотландский стартап Gravitricity в 2021 году объявил о начале пилотного проекта гравитационного накопителя энергии в Эдинбурге, крупнейшем закрытом глубоководном порту.

Будущие системы Gravitricity будут устанавливаться над 150-1500-метровыми заброшенными шахтами. Масса грузов при этом может варьироваться от 500 т до 5 тыс. т. При спуске груза будет происходить выработка электроэнергии. Она будет возвращаться в сеть в моменты пикового потребления. Приводом лебедки груза будет служить электрическая машина, способная поглощать или вырабатывать электрическую энергию при подъеме или опускании груза. Такая система позволит обеспечить 4 МВт мощности и может проработать 50 лет без потери производительности. Gravitricity собирается внедрять свою технологию в вышедших из эксплуатации шахтах по всему миру.

А ученые Массачусетского технологического института разработали батарею, которая будет питаться углекислым газом из любого источника. Она может поглощать потоки как из выхлопной трубы автомобиля, так и собирать углекислый газ из атмосферы.

Батарея состоит из ряда последовательных камер, в которых находятся электрохимические ячейки, пропускающие поток. Когда она заряжается, на поверхности электродов протекает электрохимическая реакция, а затем батарее требуется разрядка для очистки электродов. Чистый газ при этом откачивается в отдельную камеру.

Cистема может выдерживать не менее 7 тыс. циклов зарядки-разрядки с 30% потерей эффективности за это время. В будущем этот показатель может вырасти до 20–50 тыс. циклов.

Демонстрация работы батареи на углекислом газе

Между тем исследовательская группа из Национального университета Сингапура (NUS) и японского Университета Тохоку (TU) разработала технологию, которая с помощью крошечных интеллектуальных устройств позволит преобразовывать беспроводные радиочастоты в энергию. Таким образом, в будущем микроэлектронику можно будет запитывать с помощью сигналов Wi-Fi.

Ученые НИТУ «МИСиС» представили инновационный автономный источник питания: компактную атомную батарею, рассчитанную на срок до 20 лет.

Благодаря оригинальной трехмерной структуре бета-гальванического элемента его размеры уменьшились в три раза, удельная мощность увеличилась в 10 раз, а стоимость снизилась на 50%. Результаты опубликованы в международном научном журнале Applied Radiation and Isotopes.

Аккумулятор на основе бета-гальванических элементов (БВЭ)

В оригинальном устройстве используется микроканальная трехмерная структура никелевого бета-гальванического элемента. Его особенность в том, что радиоактивный элемент нанесен с обеих сторон так называемого планарного p-n перехода, что упрощает технологию изготовления элемента, а также контроль обратного тока, похищающего энергию аккумулятора. Специальная микроканальная структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз, что приводит к общему увеличению тока.

«Выходные электрические параметры предложенной конструкции: ток короткого замыкания ИКЗ — 230 нА/см2 (в обычной планарной конструкции — 24 нА), конечная мощность — 31 нВт/см2, (в планарной — 3 нВт). Конструкция позволяет на порядок повысить эффективность преобразования энергии, выделяющейся при распаде β-источника, в электричество, что в перспективе снизит стоимость источника примерно на 50% за счет рационального использования дорогой радиоизотоп », — рассказал один из разработчиков Сергей Леготин, доцент кафедры полупроводниковой электроники и физики полупроводников НИТУ «МИСиС».

В то же время, развитие позволит увеличить мощность специфической по порядку величины, из — за которой вес и размеры батарей, основанных на них будут уменьшаться в три раза при сохранении требуемого уровня выходной мощности.

Стоит помнить. Батарея может использоваться в нескольких режимах работы: в качестве аварийного источника питания и датчика температуры в устройствах, работающих при экстремальных температурах и в труднодоступных (или полностью недоступных) местах: в космосе, под водой, в высокогорных районах.

На данный момент разработчики завершают процедуру международного патентования изобретения, а само устройство уже получило признание зарубежных специалистов. В частности, в обзоре международного агентства маркетинговых исследований Research and Markets НИТУ «МИСиС» назван одним из ключевых игроков на мировом рынке бетавольтаических аккумуляторов. Университет входит в число таких компаний, как City Labs, BetaBatt, Qynergy Corp и Widetronix.

В обзоре указывается, что разработка ученых НИТУ «МИСиС» — аккумулятор на основе бета-гальванических элементов (БВЭ) — имеет большой потенциал, поскольку потребность в надежных аккумуляторах с длительным сроком службы растет во всех отраслях промышленности. С учетом уникальных характеристик — малых габаритов и безопасности — разработки ученых НИТУ «МИСиС» смогут занять значительную долю рынка энергоснабжения. опубликовано econet.ru по материалам techxplore.com

Аделя км
Оцените автора
Zariadit.ru
Добавить комментарий