Ni─MH аккумуляторы рекламируются производителями, как батареи с большой энергоёмкостью, устойчивые к холоду, и лишённые недостатков кадмиевых. Действительно, этот тип батарей не имеет в своём составе такого вредного вещества, как кадмий. Производство и переработка Ni─MH аккумуляторов не имеют тех сложностей, что для Ni─Cd. Но некоторые недостатки кадмиевых батарей у них остались.
К примеру, сохранился «эффект памяти». Да и вообще, Ni─MH очень чувствительны к режимам зарядки и разрядки. Для заряда никель─металлогидридных аккумуляторов требуются продвинутые устройства. Кроме того, чтобы продлить срок службы таких элементов, нужно их периодически восстанавливать. Поговорим о том, как это можно сделать.
- О чём нужно помнить при эксплуатации Ni─MH аккумуляторов?
- Восстановление Ni─MH аккумуляторов
- Процесс деградации Ni─MH аккумуляторов
- Процессы взаимодействия элементов в аккумуляторной батарее
- Какой он, идеальный аккумулятор?
- Ni-Mh, что это?
- Преимущества Li-ion технологии
- Особенности процесса зарядки Ni─MH аккумуляторов
- Виды зарядки никель─металлогидридных аккумуляторов
- Капельная зарядка Ni─MH аккумуляторов
- Быстрая зарядка никель─металлогидридных аккумуляторов
- Определение наличия аккумуляторной батареи
- Переход к быстрой зарядке
- Сверхбыстрая зарядка Ni-MH аккумуляторов
- Применение никель-металлогидридных аккумуляторов
- Устройство Ni─MH аккумуляторов
- Ni─MH призматической формы
- Устройство электродов Ni─MH аккумуляторов
- Устройство оксидно─никелевого электрода
- Реакции в никель─металлогидридных аккумуляторах
- Характеристики Ni-MH аккумуляторов
- Номинальное разрядное напряжение
- Напряжение разомкнутой цепи
- Хранение и срок эксплуатации
О чём нужно помнить при эксплуатации Ni─MH аккумуляторов?
Несмотря на преимущества никель─металлогидридных аккумуляторов перед никель─кадмиевыми, у них имеется ряд недостатков. И их нужно учитывать при эксплуатации.
Для начала нужно отметить, что Ni-MH аккумуляторы дороже Ni─Cd. Правда, технологии не стоят на месте и цена этих типов батарей постепенно сравнивается. Речь в этом случае ведётся об аккумуляторах распространённого форм-фактора АА («пальчиковые») и ААА («мизинчиковые»). Никель-кадмиевые аккумуляторы имеют более выраженный «эффект памяти», но, тем не менее, никель─металлогидридные батареи то же сталкиваются с этой проблемой.
Никель─металлогидридные аккумуляторные батареи имеют меньшее количество циклов заряд-разряд. Первые ухудшения их эксплуатационных характеристик наблюдаются уже после 200─300 циклов заряд-разряд. Этот тип аккумуляторов имеет больший саморазряд по сравнению с Ni─Cd батарейками (примерно в 1,5 раза).
Стоит отметить и ещё один момент. Никель─металлогидридные батарейки могут отдавать большой ток, но не рекомендуется при разряде устанавливать значения, больше 0,5*С. Это приводит к значительному сокращению числа циклов заряд-разряд и уменьшению срока службы. Пока там, где требуются высокие разрядные токи, по-прежнему используются Ni─Cd аккумуляторы.
Не забывайте о том, что зарядное устройство для Ni─MH аккумуляторов будет без проблем работать с никель─кадмиевыми, но не наоборот.
Восстановление Ni─MH аккумуляторов
Из-за «эффект памяти» никель─металлогидридные элементы могут терять значительную часть своей ёмкости. Он проявляется меньше, чем в никель─кадмиевых, но все равно присутствует. Эффект памяти проявляется при многократных циклах неполного разряда и последующего заряда. В результате такой эксплуатации аккумулятор «запоминает» всё меньшую нижнюю границу разряда, из-за чего уменьшается ёмкость. Часть активной массы аккумуляторной батареи выпадает из процесса.
Процесс деградации Ni─MH аккумуляторов
Для устранения этого эффекта рекомендуется регулярно проводить восстановление или тренировку аккумуляторов. Для этого зарядным устройством или лампочкой проводится разрядка батареи до 0,8─1 вольта, а затем полный процесс зарядки. Если аккумулятор не проходил восстановление длительное время, то рекомендуется сделать несколько таких циклов. Рекомендуемая периодичность такой тренировки – раз в месяц.
Производители Ni─MH аккумуляторов заявляют, что «эффект памяти» отнимает около 5 процентов ёмкости. Восстановление такого количества ёмкости в результате тренировки вполне реально. В принципе, это можно измерить, разрядив полностью заряженный аккумулятор. Для этого нужно будет засечь время разрядки и умножить его на ток разряда. Это и будет ёмкость, которую нужно сравнить с номиналом. Некоторые устройства, например, iMAX B6, проводят измерения в автоматическом режиме.
Важным моментом при восстановлении Ni─MH аккумуляторов является наличие у зарядного устройства функции разряда батареи с контролем по минимальному напряжению. Это нужно для того, чтобы не допустить глубокого разряда аккумулятора при восстановлении (ниже 0,8─1 вольта). Это незаменимо для тех случаев, когда вам неизвестна начальная степень заряда батарейки, и прикинуть примерное время разряда не представляется возможным.
Когда вы не знаете степень заряженности аккумуляторной батареи, разряжать лампочкой или другим сопротивлением его нужно под постоянным контролем напряжения. Иначе такое восстановление аккумуляторной батареи кончится её глубоким разрядом. Если вы делаете восстановление целой батареи, последовательно соединённых элементов, то сначала лучше провести их полную зарядку для выравнивания степени заряженности.
Вообще, по восстановлению никель─металлогидридных аккумуляторных батарей нужно отметить следующий момент. Если батарейка уже отработала несколько лет, то подобное восстановление полным разрядом и зарядом может оказаться бесполезным. Такое восстановление полезно в качестве периодической профилактики в процессе эксплуатации батареи. Дело в том, что в процессе эксплуатации Ni─MH аккумуляторов параллельно с возникновением «эффекта памяти» происходит изменение состава и объёма электролита. Для никель─кадмиевых батарей есть примеры восстановления с помощью доливки в элементы дистиллированной воды.
Процессы взаимодействия элементов в аккумуляторной батарее
Вы, наверняка, знаете, что никель─металлогидридные аккумуляторные батареи редко используются по одному элементу. Чаще они используются в наборе какой-нибудь аккумуляторной батареи. Например, аккумулятор для шуруповёрта с рабочим напряжением 14,4 вольта может набираться из 10─12 отдельных элементов, соединяемых последовательно.
Разные элементы при производстве получают определённый разброс характеристик. У одних ёмкость больше, а у других меньше. В результате постоянной зарядки в связке элементы с меньшей ёмкостью постоянно перезаряжаются. Из-за этого идёт их быстрая деградация. Если же в сборке есть закороченные элементы, то из-за этого будет идти постоянный перезаряд остальных.
Батарейки с меньшей ёмкостью будут деградировать и при разрядке. Они разряжаются раньше, чем остальные элементы. Дальнейшая разрядка приводит к их глубокому разряду, а иногда переполюсовке. Поэтому, ремонт аккумулятора шуруповёрта часто делается простым набором исправных элементов из основной и запасной батареи.
При эксплуатации по возможности нужно стремиться к тому, чтобы степень заряженности отдельных батареек была одинаковой. Так, что при периодическом восстановлении можно проводить тренировку элементов по отдельности. Поскольку для этого требуется разбирать сборку, могут возникнуть сложности. Поэтому продвинутые зарядные устройства оснащаются режимом балансировки или выравнивания. Её можно рекомендуется проводить для новых и глубоко разряженных щелочных аккумуляторов.
При балансировке, если аккумуляторная батарея сильно разряжена (менее 0,8 вольта), проводится зарядка до напряжения 1 вольт током 0,1*С. Далее ведётся зарядка током 0,3*С, ограниченная по времени 4─5 часов. Несколько циклов заряд-разряд рекомендуется делать в случае длительного хранения аккумулятора перед тем, как его использовать.
Со времени создания первого аккумулятора не прекращается поиск новых решений и усовершенствование хорошо известных формул. Изобретатели предлагают разные сочетания материалов, и самые удачные варианты идут в массовое производство. Со временем их вытесняют более эффективные аналоги с еще лучшими характеристиками.
Так произошло с никель-кадмиевыми аккумуляторами, на смену которым пришли никель-металлгидридные модели – с электродами из сплавов никеля с редкоземельными металлами. Но и им пришлось уступить лидерство, когда на рынке появились литий-ионные аккумуляторы. Поиски идеальных элементов питания продолжаются до сих пор, но пока Li-ion технология по-прежнему остается лучшей из всех вариантов.
Какой он, идеальный аккумулятор?
В идеале накопитель энергии должен при минимальных размерах и небольшом весе иметь достаточно большую емкость. Тогда он сможет накапливать больше электроэнергии и дольше обеспечивать питание автономно работающих устройств. Но кроме удельной энергоемкости важны и остальные характеристики.
Универсальная аккумуляторная батарея li-ion.
- Напряжение, Вольт: 48,1
- Ёмкость, А*ч: от 10,4
- Характеристики могут варьироваться в зависимости от потребностей заказчика.
25 000 р.
Универсальная аккумуляторная батарея li-ion.
- Напряжение, Вольт: 48,1
- Ёмкость, А*ч: от 13
- Характеристики могут варьироваться в зависимости от потребностей заказчика.
26 000 р.
Универсальная аккумуляторная батарея li-ion.
- Напряжение, Вольт: 14,8
- Ёмкость, А*ч: от 7,8
- Характеристики могут варьироваться в зависимости от потребностей заказчика.
7 269 р.
Универсальная аккумуляторная батарея li-ion.
- Напряжение, Вольт: 11,1
- Ёмкость, А*ч: от 23,4
- Характеристики могут варьироваться в зависимости от потребностей заказчика.
10 384 р.
Универсальная аккумуляторная батарея li-ion.
- Напряжение, Вольт: 11,1
- Ёмкость, А*ч: от 20,8
- Характеристики могут варьироваться в зависимости от потребностей заказчика.
9 535 р.
Универсальная аккумуляторная батарея li-ion.
- Напряжение, Вольт: 11,1
- Ёмкость, А*ч: от 18,2
- Характеристики могут варьироваться в зависимости от потребностей заказчика.
8 686 р.
Ni-Mh, что это?
Такое обозначение имеют никель-металлогидридные аккумуляторы. Они появились на рынке в 1990 году, придя на смену никель-кадмиевой технологии. Номинальное напряжение у Ni-Cd и Ni-Mh аккумуляторов одинаково – порядка 1,2 В. Но по сравнению с Ni-Cd элементами, Ni-Mh ячейки не содержат токсичных тяжелых металлов, поэтому более безопасны при производстве и утилизации. Также они имеют увеличенную почти на 30% удельную энергоемкость – около 150 Вт·ч/дм³.
Ресурс у Ni-Mh элементов питания скромный – 200–500 циклов заряд-разряд. Из-за склонности к нагреву эти аккумуляторы оснащаются дополнительными деталями – температурными реле и предохранителями. Также они склонны к значительному саморазряду – даже в 1,5 раза больше, чем у предшествующих им NiCd моделей.
Поэтому никель-металлгидридные элементы нужно беречь от полного разряда в процессе работы, хранить заряженными и при длительном хранении периодически перезаряжать. При разряде «в ноль» происходят необратимые изменения в структуре и снижение емкости. Поэтому эффективность и срок службы таких элементов питания во многом зависит от соблюдения рекомендаций по их использованию и хранению.
Преимущества Li-ion технологии
Литий-ионные аккумуляторы не зря используются в большинстве современных устройств. Со времени создания в 1991 году они отлично заявили о себе и заметно потеснили конкурентов. И хотя поиски идеального аккумулятора продолжаются до сих пор, литий-ионные АКБ пока остаются неоспоримыми лидерами.
В отличие от Ni-Mh аккумуляторов, Li-ion модели имеют:
Есть у Li-ion аккумуляторов и минусы:
- снижение емкости на морозе
- боязнь перезаряда и глубокого разряда
- риск возгорания при разгерметизации или коротком замыкании.
Для устранения этих недостатков аккумуляторные батареи и элементы питания оснащаются платами контроля и защиты.
BMS плата четко отслеживает рабочие параметры и не допускает опасных состояний. В частности, она отключает севшие аккумуляторы от нагрузки, контролирует уровень и равномерность заряда на всех элементах питания АКБ и останавливает процесс заряда, когда напряжение достигает своего максимума. При наличии рабочей платы защиты и соблюдении простых правил безопасности Li-ion аккумуляторы абсолютно безопасны в использовании.
Особенности процесса зарядки Ni─MH аккумуляторов
В процессе заряда в аккумуляторе проходит ряд химических реакций, на которые идёт часть подаваемой энергии. Другая часть энергии преобразуется в тепло. КПД процесса зарядки ─ это та часть подаваемой энергии, которая остаётся в «запасе» у батареи. Значение КПД может отличаться в зависимости от условий заряда, но никогда не бывает равным 100 процентов. Стоит отметить, что КПД при зарядке Ni─Cd аккумуляторов выше, чем в случае с никель─металлогидридными. Процесс зарядки Ni─MH аккумуляторов происходит с большим выделением тепла, что накладывает свои ограничения и особенности. Подробнее о том, как заряжать Ni-Cd аккумуляторы, читайте в статье по указанной ссылке.
Скорость зарядки больше всего зависит от величины подаваемого тока. Какими токами заряжать Ni─MH батареи, определяется выбранным типом заряда. В этом случае ток измеряется в долях от ёмкости (С) Ni─MH аккумуляторов. Например, при ёмкости 1500 мА-ч ток 0,5С будет составлять 750 мА. В зависимости от скорости заряда никель─металлогидридных аккумуляторов различают три вида зарядки:
По большому счёту типов зарядки всего два: капельная и ускоренная. Быстрая и ускоренная – это практически одно и то же. Отличаются они лишь методом остановки процесса заряда.
Вообще, любая зарядка Ni─MH аккумуляторов током больше 0,1С является быстрой и требует отслеживания каких-то критериев окончания процесса. Капельная зарядка этого не требует и может продолжаться неопределённое время.
Виды зарядки никель─металлогидридных аккумуляторов
Теперь, давайте, рассмотрим особенности разных видов зарядки подробнее.
Капельная зарядка Ni─MH аккумуляторов
Здесь стоит сказать, что этот тип зарядки не способствует увеличению срока службы Ni─MH аккумуляторов. Поскольку капельная зарядка не отключается даже после полного заряда, ток выбирается очень маленьким. Это сделано для того, чтобы при длительной зарядке не происходило перегрева батареек. В случае Ni─MH батарей значение тока может быть даже снижено до 0,05С. Для никель─кадмиевых подойдёт 0,1С.
При капельной зарядке отсутствует характерный максимум напряжения и ограничением этого типа зарядки может выступать только время. Чтобы оценить необходимое время, потребуется знать ёмкость и начальный заряд батареи. Чтобы рассчитать время зарядки более точно, нужно разрядить батарею. Это исключит влияние начального заряда. КПД при капельной зарядке Ni─MH аккумуляторов находится на уровне 70 процентов, что ниже остальных видов.
Многие производители никель─металлогидридных батарей не рекомендуют использовать капельную зарядку. Хотя в последнее время появляется всё больше информации о том, что современные модели Ni─MH аккумуляторов не деградируют в процессе капельного заряда.
Быстрая зарядка никель─металлогидридных аккумуляторов
Производители Ni─MH аккумуляторов в своих рекомендациях приводят характеристики для заряда с величиной тока в интервале 0,75─1С. Ориентируйтесь на эти значения, когда будете выбирать, каким током заряжать Ni─MH аккумуляторы. Значения тока заряда выше этих значений не рекомендуются, поскольку это может привести к открытию аварийного клапана для сброса давления. Быструю зарядку никель─металлогидридных батарей рекомендуется проводить при температуре 0─40 градусов Цельсия и напряжении 0,8─,8 вольта.
КПД процесса быстрой зарядки значительно больше, чем капельной. Он составляет около 90 процентов. Однако к моменту окончания процесса КПД резко снижается, и энергия переходит в выделение тепла. Внутри батарейки резко растёт температура и давление. Ni-MH аккумуляторы имеют аварийный клапан, который может открыться при увеличении давления. В этом случае свойств аккумулятора будут безвозвратно потеряны. Да и сама высокая температура оказывает пагубное влияние на структуру электродов батарейки. Поэтому нужны чёткие критерии, по которым процесс заряда будет останавливаться.
Определение наличия аккумуляторной батареи
На этом этапе подаётся ток 0,1С и выполняется проверка напряжения на полюсах. Для старта процесса заряда напряжение должно составлять не более 1,8 вольта. Иначе процесс не стартует.
Стоит отметить, что проверка наличия аккумулятора проводится и на других стадиях. Это необходимо на тот случай, если аккумулятор вынимается из зарядного устройства.
Если логика ЗУ определяет, что величина напряжения больше 1,8 вольта, то это воспринимается, как отсутствие аккумуляторной батареи или её повреждение.
Переход к быстрой зарядке
Ток заряда на этой стадии находится в интервале 0,5─1С. Самое главное на стадии быстрой зарядки является своевременного отключение тока. Для этого при зарядке Ni─MH аккумуляторов используется контроль по нескольким разным критериям.
Для тех, кто не в курсе, при зарядке Ni─Cd аккумуляторов используется метод контроля по дельте напряжения. В процессе зарядки оно постоянно растёт, а по окончании процесса начинает падать. Обычно окончание заряда определяется по падению напряжения на 30 мВ. Но этот способ контроля с никель─металлогидридными аккумуляторами работает не очень хорошо. В этом случае падение напряжение не так сильно выражено, как в случае Ni─Cd. Поэтому для срабатывания отключения нужно увеличивать чувствительность. А при повышенной чувствительности повышается вероятность ложного срабатывания из-за шумов аккумулятора. Кроме того, при зарядке нескольких батареек срабатывание происходит в разное время и весь процесс размазывается.
Но всё равно остановка зарядки по падению напряжения является основной. При заряде током 1С падение напряжения для отключения составляет 2,5─12 мВ. Иногда производители устанавливают детектирование не по падению, а по отсутствию изменения напряжения в конце заряда.
При этом в период первых 5─10 минут зарядки контроль по дельте напряжения отключается. Это объясняется тем, что при старте быстрой зарядки напряжение аккумулятора может сильно меняться в результате процесса флуктуации. Поэтому на начальном этапе контроль отключается, чтобы исключить ложные срабатывания.
Из-за не слишком высокой надёжности отключения зарядки по дельте напряжения используется контроль и по другим критериям.
В конце процесса заряда Ni─MH аккумуляторной батареи её температура начинает расти. По этому параметру и делается отключение заряда. Чтобы исключить значение температуры ОС, мониторинг ведётся не по абсолютному значению, а по дельте. Обычно в качестве критерия прекращения заряда берётся рост температуры более чем на 1 градус за минуту. Но этот способ может не срабатывать при токах заряда менее 0,5С, когда температура растёт достаточно медленно. И в этом случае возможен перезаряд Ni-MH батареи.
Ещё существует метод контроля процесса заряда по анализу производной напряжения. В этом случае ведётся мониторинг не дельты напряжения, а скорость его максимального роста. Метод позволяет прекращать быструю зарядку несколько раньше завершения заряда. Но такой контроль сопряжён с рядом сложностей, в частности, более точного измерения напряжения.
Некоторые зарядные устройства для Ni─MH аккумуляторов применяют для заряда не постоянный ток, а импульсный. Он подаётся продолжительностью 1 секунда с интервалами 20─30 миллисекунд. В качестве преимуществ такого заряда специалисты называют более равномерное распределение активных веществ по объёму аккумулятора и снижение образования крупных кристаллов. Кроме того, сообщается о более точном измерении напряжения в интервалах между подачей тока. Как развитие этого метода, был предложен Reflex Charging.
В этом случае при подаче импульсного тока чередуется заряд (1 секунда) и разряд (5 секунд). Ток разряда ниже заряда в 1─2,5 раза. В качестве преимуществ можно выделить
- меньшую температуру при заряде
- устранение крупных кристаллических образований.
При зарядке никель─металлогидридных аккумуляторов очень важным является контролировать окончание процесса зарядки по различным параметрам. Должны быть предусмотрены способы аварийного завершения заряда. Для этого может быть использовано абсолютное значение температуры. Часто таким значением бывает 45─50 градусов Цельсия. В этом случае заряд должен быть прерван и возобновлён после остывания. Способность принимать заряд у Ni─MH аккумуляторов при такой температуре снижается.
Зарядные устройства для Ni─Cd аккумуляторов часто после завершения процесса заряда переводят батареи в режим капельной зарядки. Для Ni─MH батарей это будет полезно только в случае подачи очень маленького тока (около 0,005С). Этого будет достаточно для компенсации саморазряда аккумулятора.
В идеале зарядка должна иметь функцию включения поддерживающей зарядки при падении напряжения на батарейке. Поддерживающая зарядка имеет смысл только в том случае, когда между зарядом батареек и их использованием проходит достаточно длительное время.
Сверхбыстрая зарядка Ni-MH аккумуляторов
Разбирать какие-то отдельные модели для заряда Ni─MH аккумуляторов в рамках этой статьи нецелесообразно. Достаточно отметить, что это могут быть узконаправленные ЗУ под зарядку никель─металлогидридных батарей. Они имеют зашитый алгоритм зарядки (или несколько) и по нему постоянно работают. А есть универсальные устройства, которые позволяют тонко настраивать параметры зарядки. К примеру, iMAX B6. Такие устройства могут быть использованы для заряда различных батарей. В том числе, и для зарядки автомобильных аккумуляторов, если есть адаптер питания соответствующей мощности.
Нужно сказать пару слов о том, какие характеристики и функционал должно иметь ЗУ для Ni─MH аккумуляторов. Устройство обязательно должно иметь возможность регулировки тока зарядки или его автоматическая установка в зависимости от типа батареек. Почему это важно?
Сейчас существует множество моделей никель─металлогидридных аккумуляторов, и многие батарейки одинакового форм-фактора могут отличаться ёмкостью. Соответственно, ток зарядки должен быть разный. Если заряжать током выше нормы, будет нагрев. Если ниже нормы, то процесс зарядки будет идти дольше положенного.
В большинстве случаев токи на зарядных устройствах делаются в виде «пресетов» для типовых батареек. В целом же при заряде производители Ni-MH аккумуляторов не рекомендуют установку тока более 1,3─1,5 ампера для типа АА вне зависимости от ёмкости. Если вам по каким-то причинам требуется увеличение этого значения, то нужно позаботиться о принудительном охлаждении аккумуляторов.
Ещё одна проблема связана с отключением питания зарядного устройства в процессе зарядки. В этом случае при включении питания она начнётся снова со стадии определения аккумулятора. Момент окончания быстрой зарядки определяется не временем, а рядом других критериев. Поэтому если она прошла, то при включении будет пропущена. А вот этап дозарядки пройдёт снова, если он уже был.
В результате аккумулятор получает нежелательный перезаряд и лишний нагрев. Среди прочих требований к ЗУ Ni-MH аккумуляторов – низкий разряд при отключении питания зарядного устройства. Ток разряда в обесточенном ЗУ не должен превышать 1 мА.
Стоит отметить и наличие в зарядном устройстве ещё одной важной функции. Оно должно распознавать первичные источники тока. Проще говоря, марганцево-цинковые и щелочные батарейки.
При установке и зарядке таких батареек в ЗУ они вполне могут взорваться, поскольку не имеют аварийного клапана для сброса давления. От зарядного устройства требуется, чтобы оно могло распознавать такие первичные источники тока и не включать зарядку.
Как вы поняли, основные правила эксплуатации Ni─MH аккумуляторов – это не допускать перегрева и перезаряда.
Применение никель-металлогидридных аккумуляторов
Ni─MH аккумуляторы широко применяются для питания различной электроники, работающей в автономном режиме. В большинстве своём они выполняются в виде АА или ААА батарей. Хотя есть и другие исполнения, в том числе, промышленные аккумуляторные батареи. Сфера применения у них практически полностью совпадает с никель─кадмиевыми и даже шире, поскольку они не содержат токсичных материалов.
Никель─металлогидридные аккумуляторы (1500—3000 мАч) используется в различных устройствах, которые имеют высокое энергопотребление за короткий промежуток времени. При этом, как правило, отсутствует предварительное хранение батареек. В качестве примера можно привести такие устройства, как плееры, фотоаппараты, радиоуправляемые модели и другие гаджеты, где энергия аккумулятора Ni─MH расходуется за короткое время.
Устройство Ni─MH аккумуляторов
В этой конструкции разноимённые электроды разделены сепаратором. Все вместе они свёрнуты в рулон. Он помещается в корпус и герметизируется крышкой со специальной прокладкой. В крышке сделан аварийный клапан, рассчитанный на открытие при возрастании давления внутри аккумулятора до 2─4 МПа.
Ni─MH призматической формы
В Ni─MH аккумуляторах призматической формы поочерёдное размещение разноимённых электродов. Их также разделяет сепаратор. Сборка электродов находится в металлическом или пластиковом корпусе, который закрывается герметичной крышкой. В крышке в большинстве случаев ставится датчик или клапан давления. Ниже представлена конструкция никель-металлогидридного аккумулятора призматической формы.
Конструкция никель─металлогидридных аккумуляторов призматической формы
В никель-металлогидридных аккумуляторных батареях в роли электролита выступает щёлочь. По составу это КОН с добавлением LiOH. Материал сепаратора в большинстве случаев это нетканый полиамид и полипропилен, обработанные смачивателем. Толщина сепаратора от 0,12 до 0,25 миллиметров.
Положительный электрод Ni─MH аккумуляторов выполняется из тех же материалов, что используются в Ni─Cd аккумуляторных батареях. Это оксидно─никелевая металлокерамика, пенополимерные и войлочные материалы.
Устройство электродов Ni─MH аккумуляторов
Основной материал, который определяет характеристики Ni─MH аккумуляторов, это сплав, поглощающий водород. Он может абсорбировать объем водорода в тысячу раз больший, чем его собственный объем. Наиболее распространённым сплавом для производства металловодородных электродов стал LaNi5. Так обозначается группа сплавом, где никель частично заменён на кобальт, марганец и алюминий. Это сделано для увеличения его активности и стабильности. В целях экономии ряд производителей используют не лантана, а Мm (миш-металл). Он представляет собой смесь редкоземельных элементов в соотношении, близком к тому, что есть в природной руде. Там кроме La есть неодим, церий, празеодим.
Во время прохождения цикла заряд-разряд кристаллическая решётка сплава сжимается и расширяется на 15─25 процентов. Это обусловлено процессами десорбции и абсорбции водорода. В результате растёт внутреннее напряжение и в сплаве образуются трещины. Из-за образования трещин растёт площадь поверхности, подвергающейся коррозии из-за реакции со щёлочью (электролит). В результате происходит постепенное снижение разрядной ёмкости отрицательного электрода.
Поскольку в аккумуляторной батарее имеется ограниченное количество электролита, все описанные процессы порождают проблемы, которые связаны с его перераспределением. В результате коррозии сплава его поверхность становится химически пассивной. На ней образуются оксиды и гидроксиды, стойкие к коррозии. Они увеличивают перенапряжение при реакции на металлогидридном электроде. Продукты коррозии образуются с потреблением водорода и кислорода из щелочи. Это ведёт к уменьшению количества электролита в батарее и увеличению её внутреннего сопротивления. Все эти процессы отрицательно сказываются на сроке эксплуатации Ni─MH аккумуляторов.
Устройство оксидно─никелевого электрода
Всё большую популярность обретают пенополимерные и безламельные войлочные электроды.
Конструктивно ламельные оксидно─никелевые электроды состоят из соединённых ламелей. Ламель – это перфорированные коробочки из тонкой стальной никелированной ленты. Её толщина составляет 0,1 миллиметра.
Металлокерамические спечённые электроды имеют пористую структуру металлокерамической основы. В порах, которых в основе не менее 70 процентов, находится активная масса. Материал основы – это карбонильный никелевый мелкодисперсный порошок (60─65 процентов) и карбонат аммония (или карбамид). Этот порошок напрессовывается, накатывается на сетку из никеля или стали. Также может выполняться его напыление.
Далее по технологии сетка с порошком проходит термообработку в атмосфере водорода. Температура при этом составляет 800─960 градусов Цельсия. Карбамид или карбонат аммония разлагается и происходит спекание никеля. В результате получается основа толщиной 1─2,3 миллиметра. Пористость получаемой основы составляет 80─85 процентов, а радиус пор равен 5─20 микрометров. Далее полученная основа пропитывается нагретым до 60─90 градусов раствором сульфата или нитрата никеля. А затем ещё делается пропитка раствором щелочи, осаждающей оксиды и гидроксиды никеля.
На современных производствах применяется электрохимическая технология пропитки. Электрод в растворе нитрата никеля подвергают катодной обработке. В результате в порах выделяется водород и пластины подщелачиваются. В порах пластины происходит осаждение гидроксидов и оксидов никеля.
Фольговые электроды являются разновидностью спечённых электродов. Их производят следующим образом. На перфорированную ленту из никеля толщиной около 0,05 миллиметра с двух сторон наносится спиртовая эмульсия никелевого карбонильного порошка со связующими веществами. Далее проводится спекание и пропитка реагентами (химическая или электрохимическая). Толщина электрода равна 0,4─0,6 миллиметра.
Прессованные электроды производятся путём напрессовки на ленту или сетку из стали активной массы. Давление при этом составляет 35─60 МПа. В качестве активной массы используется смесь гидроксидов никеля и кобальта, графита, связующих веществ.
Металловойлочные электроды представляют собой высокопористую основу, состоящую из волокон углерода или никеля. Пористость основы составляет от 95 процентов. Войлочный электрод делается на основе углеграфитового или полимерного фетра, покрытого никелем. Толщина электрода может быть от 0,8 до 10 миллиметров. Активная масса внедряется в войлок различными методиками.
Реакции в никель─металлогидридных аккумуляторах
Как уже разбиралось выше, в Ni─MH аккумуляторе положительный электрод оксидно─никелевый также, как в Ni─Cd батареях. А вот отрицательный электрод вместо кадмиевого используется из никелевого сплава с добавлением редкоземельных элементов.
Какие реакции протекают в Ni─MH аккумуляторах?
- На оксидно-никелевом электроде (положительный) протекает реакция:
Ni(OH)2 + OH−- ⇒ NiOOH + H2O + e−
NiOOH + H2O + e− ⇒ Ni(OH)2 + OH−
- На электроде из никелевого сплава (отрицательный) протекает реакция:
M + H2O + e− ⇒ MH + OH−-
MH + OH− ⇒ M + H2O + e−
- Суммарная реакция, протекающая в Ni─MH аккумуляторе, выглядит следующим образом:
Ni(OH)2 + M ⇒ NiOOH + MH
NiOOH + MH ⇒ Ni(OH)2 + M
При этом щелочной электролит не принимает участия в реакции образования тока.
После того, как при заряде аккумулятора до уровня 70─80 процентов на оксидно─никелевом запускается выделение кислорода в соответствии со следующей реакцией:
2OH− ⇒ 1/2O2 + H2O + 2e−
На отрицательном электроде происходит реакция восстановления этого кислорода:
1/2O2 + H2O + 2e− ⇒ 2OH−
Так описывается процесс перезарядки никель─металлогидридного аккумулятора. Эти реакции образуют собой замкнутую циркуляцию кислорода.
В процессе восстановления кислорода происходит увеличение ёмкости металлогидридного электрода благодаря выделению группы ОН−.
Характеристики Ni-MH аккумуляторов
При повышении нагрузки и понижении температуры ОС ёмкость никель─металлогидридного аккумулятора снижается в соответствии с графиком ниже.
Зависимость разрядной ёмкости Ni-MH аккумулятора от температуры при разных токах разряда: 0.2С, 1С, 3С
Эффект снижения ёмкости особенно заметен при существенной скорости разряда в области отрицательных температур.
Номинальное разрядное напряжение
Номинальное разрядное напряжение (Uр) обычно находится в пределах 1,2─1,25 вольта при токе разряда (Iр), определяемом по формуле:
Ip = 0,1─0,2С, где
С — номинальная ёмкость батареи при температуре 25 градусов Цельсия.
Конечное напряжение разряда составляет 1 вольт. Как можно видеть на графике ниже, напряжение снижается при возрастании нагрузки.
Разрядные характеристики Ni-MH аккумулятора при температуре 20 С и разных токах нагрузки: 0.2С, 1С, 2С, 3С
Напряжение разомкнутой цепи
Величину этого параметра Ni─MH аккумуляторов определить достаточно сложно. Это определяется тем, что равновесный потенциал оксидно─никелевого электрода во многом зависит от степени окисленности Ni.
Важную роль играет и равновесный потенциал отрицательного электрода, который определяется степенью насыщенности водородом. Спустя сутки после заряда батареи напряжение разомкнутой никель-металлогидридного аккумулятора находится в пределах 1,30─1,35 вольта.
Хранение и срок эксплуатации
Во время хранения Ni─MH аккумулятора, как и в случае других типов батарей, имеет место явление саморазряда. При комнатной температуре за первый месяц хранения такой аккумулятор теряет 20─30 процентов ёмкости. В дальнейшем каждый месяц ёмкость никель─металлогидридного аккумулятора падает на 3─7 процентов в месяц. Интенсивность саморазряда возрастает с ростом температуры, как можно видеть на графике ниже.
Зависимость разрядной ёмкости Ni-MH аккумулятора от времени хранения при разных температурах: 0, 20, 40 С
Если интересно, можете прочитать материал о том, как восстанавливают Ni─Cd аккумуляторы для шуруповерта.